In 1998, a similar, privately funded quest was launched by the American researcher Craig Venter and his firm Celera Genomics. The $300 million Celera effort was intended to proceed at a faster pace and at a fraction of the cost of the roughly $3 billion publicly funded project.
Celera used a riskier technique called whole genome shotgun sequencing, which had been used to sequence bacterial genomes of up to six million base pairs in length, but not for anything nearly as large as the three thousand million base pair human genome.
Celera initially announced that it would seek patent protection on "only 200-300" genes, but later amended this to seeking "intellectual property protection" on "fully-characterized important structures" amounting to 100-300 targets. The firm eventually filed preliminary ("place-holder") patent applications on 6,500 whole or partial genes. Celera also promised to publish their findings in accordance with the terms of the 1996 "Bermuda Statement," by releasing new data quarterly (the HGP released its new data daily), although, unlike the publicly funded project, they would not permit free redistribution or commercial use of the data.
In March 2000, President Clinton announced that the genome sequence could not be patented, and should be made freely available to all researchers. The statement sent Celera's stock plummeting and dragged down the biotechnology-heavy Nasdaq. The biotechnology sector lost about $50 billion in market capitalization in two days.
Although the working draft was announced in June 2000, it was not until February 2001 that Celera and the HGP scientists published details of their drafts. Special issues of Nature (which published the publicly funded project's scientific paper)[7] and Science (which published Celera's paper[8]) described the methods used to produce the draft sequence and offered analysis of the sequence. These drafts covered about 83% of the genome (90% of the euchromatic regions with 150,000 gaps and the order and orientation of many segments not yet established). In February 2001, at the time of the joint publications, press releases announced that the project had been completed by both groups. Improved drafts were announced in 2003 and 2005, filling in to ~92% of the sequence currently.
The competition proved to be very good for the project, spurring the public groups to modify their strategy in order to accelerate progress. The rivals initially agreed to pool their data, but the agreement fell apart when Celera refused to deposit its data in the unrestricted public database GenBank. Celera had incorporated the public data into their genome, but forbade the public effort to use Celera data.
HGP is the most well known of many international genome projects aimed at sequencing the DNA of a specific organism. While the human DNA sequence offers the most tangible benefits, important developments in biology and medicine are predicted as a result of the sequencing of model organisms, including mice, fruit flies, zebrafish, yeast, nematodes, plants, and many microbial organisms and parasites.
In 2004, researchers from the International Human Genome Sequencing Consortium (IHGSC) of the HGP announced a new estimate of 20,000 to 25,000 genes in the human genome.[9] Previously 30,000 to 40,000 had been predicted, while estimates at the start of the project reached up to as high as 2,000,000. The number continues to fluctuate and it is now expected that it will take many years to agree on a precise value for the number of genes in the human genome.